我科學家研發超高速光電計算芯片
記者從清華大學獲悉,該校自動化系戴瓊海院士、吳嘉敏助理教授與電子工程系方璐副教授、喬飛副研究員聯合攻關,研發出超高速光電模擬芯片,算力達到目前高性能商用芯片的3000余倍。相關成果以“高速視覺任務中的純模擬光電芯片”為題,以長文形式發表在《自然》期刊上。如果用交通工具的運行時間來類比芯片中信息流計算的時間,那麼這枚芯片的出現,相當於將京廣高鐵8小時的運行時間縮短到8秒鐘。
這是一種“掙脫”摩爾定律的全新計算架構。1965年,英特爾公司創始人之一戈登·摩爾提出影響芯片行業半個多世紀的“摩爾定律”——每隔約兩年,集成電路可容納的晶體管數目便增加一倍。然而隨著晶體管尺寸接近物理極限,近十年內摩爾定律已放緩甚至面臨失效。如何建立人工智能時代的芯片“新”秩序,成為當前國際社會高度關注的前沿熱點。
作為人類已知的宇宙中最快速度之一,許多超高速物理領域都少不了光的身影。然而科學家們用光來做計算,並不是一件容易的事。當計算載體從電變為光,就需要利用光傳播中攜帶的信息進行計算。數年來海內外知名團隊相繼提出多種設計,但要替代現有電子器件實現系統級應用,仍面臨許多國際難題。
清華大學攻關團隊創造性地提出了光電深度融合的計算框架。從最本質的物理原理出發,結合了基於電磁波空間傳播的光計算與基於基爾霍夫定律的純模擬電子計算,“掙脫”傳統芯片架構中數據轉換速度、精度與功耗相互制約的物理瓶頸,在一枚芯片上突破大規模計算單元集成、高效非線性、高速光電接口三個國際難題。
實測表現下,光電融合芯片的系統級算力較現有的高性能芯片架構提升了數千倍。然而,如此驚人的算力,還只是這枚芯片諸多優勢之一。
在研發團隊演示的智能視覺任務和交通場景計算中,光電融合芯片的系統級能效(單位能量可進行的運算數)是現有高性能芯片的400萬余倍。形象地說,供現有芯片工作一小時的電量,可供它工作500多年。
在超低功耗下運行的光電融合芯片將有助於大幅度改善芯片發熱問題,為芯片的未來設計帶來全方位突破。
更進一步,該芯片已取得比7納米制程的高性能芯片多個數量級的性能提升。且其所使用的材料簡單易得,造價僅為后者的幾十分之一。
《自然》期刊特邀發表的該研究專題評述指出:“或許這枚芯片的出現,會讓新一代計算架構,比預想中早得多地進入日常生活。”(記者鄧暉)
分享讓更多人看到
- 評論
- 關注